
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— when optimizing networked applications that

require multiple streams of high bandwidth communications,

network bandwidth constraints need to be taken into account.

This general problem is referred to as cross-stratum

optimization. However, application providers, compute providers

(data centers), and network providers may be separate business

entities and may want to share a minimal amount of information.

In addition, by minimizing the amount of information shared one

also promotes interface efficiency particularly when information

changes with time. This paper provides an architecture and

optimization methods that enable high bandwidth networking as

a service by giving new techniques for representing and sharing

network bandwidth constraint information. The best

representation can be dependent on both the networks data

plane, control plane technologies, information hiding

requirements, and interface efficiency considerations. We show

that depending on the data and control plane that either a list of

abstract link path vectors with enumerated shared bottlenecks or

an abstract capacitated graph well represents network

bandwidth constraints. Taking into account information hiding

and interface efficiency we then give methods to further minimize

the information transferred in these two approaches with varying

degrees of fidelity.

Index Terms—cross stratum optimization, joint

network/compute optimization, global load and network

balancing.

I. INTRODUCTION

ETWORKED applications, such as those running in, or

between multiple data centers and users make use of both

compute and network resources. As shown in Figure 1

multiple distinct entities with differing business relationships

may be involved in the delivery of a networked application.

These can include: (a) application providers, (b) data center

Manuscript received October 9, 2001. (Write the date on which you

submitted your paper for review.) This work was supported in part by the U.S.

Department of Commerce under Grant BS123456 (sponsor and financial

support acknowledgment goes here). Paper titles should be written in

uppercase and lowercase letters, not all uppercase. Avoid writing long

formulas with subscripts in the title; short formulas that identify the elements

are fine (e.g., "Nd–Fe–B"). Do not write “(Invited)” in the title. Full names of

authors are preferred in the author field, but are not required. Put a space

between authors’ initials.

F. A. Author is with the National Institute of Standards and Technology,

Boulder, CO 80305 USA (corresponding author to provide phone: 303-555-

5555; fax: 303-555-5555; e-mail: author@ boulder.nist.gov).

S. B. Author, Jr., was with Rice University, Houston, TX 77005 USA. He

is now with the Department of Physics, Colorado State University, Fort

Collins, CO 80523 USA (e-mail: author@lamar.colostate.edu).

providers, (c) network providers, and (d) cross stratum

optimizers (aka global load balancers). We are particularly

concerned here with the information shared between the

network, application provider, and cross stratum optimizer

which we show in Figure 1 as the networking as a service

(NaaS) interface.

Figure 1. High level entities and control interfaces associated

with cross stratum optimization.

We use the term cross stratum optimizer in preference to that

of "load balancer" to emphasize that we are considering cost,

constraints, and quality of service in both the network and

application strata. We require that this optimization process (a)

be dynamic so it can respond to rapidly changing load and

resource conditions, (b) require minimal information sharing

amongst distinct business entities, (c) be able to deal with a

wide range of network data plane and control technologies,

and (d) efficiently handle high bandwidth networked

applications that utilize multiple concurrent information flows

that may vie for limited network resources.

In this paper we show how to best represent and share network

bandwidth and cost constraints across the NaaS interface

consistent with data plane and control plane limitations and

requirements for information hiding and abstraction.

A. Related Work

There is extensive literature in the general area where

networks and applications meet, such as on content delivery

networks (CDN), web replica placement, etc… Here we

review those work that are close to this one in intent and

scope.

Early notions of cross stratum optimization can be found in

Application

Provider

Cross Stratum

Optimizer

Network

Provider

Data Center

Data Center

Data Center

Network

Provider

NaaS

interface

IaaS

interface

Enabling High Bandwidth Networking as a

Service (NaaS)

Greg M. Bernstein and Young Lee, Member, IEEE

N

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

reference [1] which introduced the notion of dynamic server

selection as opposed to static server configuration. In their

server selection they consider server load, network bandwidth,

and latency as well as client demands in terms of file size.

They used measurements of the network to determine

bandwidth and latency and didn't assume knowledge of

client/server location or network topology.

In reference [2] an efficient measurement based method for

deriving approximate network topology was given and applied

to consider server selection and application overlay networks.

The application overlay networks of [2] are similar to modern

multi-flow network applications. A key result of [2] is the

quality optimizations possible even with relatively

approximate topology information. They do not, however,

consider bandwidth constraints.

References [1] and [2] utilized measurements of available

network capacity. In networks where traffic policing is used

such methods would provide erroneous information, i.e., the

current policer limits would be measured rather than available

network capacity. Further, the capacity of underlying

connection oriented packet switching, or circuit switched

networks cannot be measured.

Reference [3] deals with application overlay networks and

specifically addresses the "bandwidth provisioning problem".

Key to their analysis and results is the consideration of the

price of network bandwidth in their optimization. They do not

however, consider price or availability of server resources.

They do not assume limits on the amount of bandwidth

available from the network.

Reference [4] introduces the key concept of a third party

replica selector (optimizer) whose selection criteria are guided

by policies that can include both network and server level

information. In addition a decentralized algorithmic approach

is given. They allow for dynamics in their costs. However they

do not consider network bandwidth constraints. We further

note that such a third party optimizer as introduced in [4]

could also act as a trusted neutral third party separate from

either data center, network, or application provider.

Reference [5] introduces the key idea that networks and

applications can and should cooperate by sharing limited

information over a simple general interface to allow joint

resource optimization. Their network/application interface

shares a general notion of "distance" between generalized

location identifiers called PIDs. They do not explicitly share

bandwidth constraint information across this interface, though

they show how to change reported "distance" measures in

response to increased link loading. Many of the ideas from

reference [5] have been incorporated into a relatively recent

standards efforts at the IETF on application layer traffic

optimization (ALTO)[6].

B. Contributions and Outline

This paper is concerned with the NaaS interface for

applications that consume significant amounts of bandwidth

relative to network capacity. In this case, network bandwidth

constraints need to be explicitly communicated between a

network and the cross stratum optimizer. We show how to

optimally convey network bandwidth constraints for a wide

range of networking technologies. Such techniques are useful

between large groups of users and data centers, between data

centers across a WAN or MAN, within data centers across a

LAN, or even within compute clusters.

We start with a discussion of two generic cross stratum

optimization problems: one related to server selection, and

another related to remote backup scheduling. We show how

these can be formulated as linear programming (LP) problems,

or mixed integer linear programming (MILP) problems with

the network constraints and costs represented as an

"augmenting" multi-commodity flow problem. We furnish two

versions of this augmenting multi-commodity flow problem

based on given paths or a network graph. We then use these

formulations along with insight into networks topology to

derive exact and approximate minimal representations of the

networks bandwidth constraints appropriate for a given

network control and data plane technology. Finally, we

provide an overview of an interface that can enable high

bandwidth NaaS for a wide variety of network data and

control planes.

II. CROSS STRATUM OPTIMIZATION PROBLEMS

In the following, we give fairly general formulations of two

cross stratum optimization problems. The first is a variant of a

server selection problem that could represent video on demand

(VoD) services. The second involves the scheduling of large

data transfers such as backups. To deal with different types of

network constraints with respect to choices in path we look at

these optimization problems as "coupled" to multi-commodity

flow problems involving the network resources. We then

quickly review two different multi-commodity flow

formulations that are useful for the different path choice

restrictions that we derived in section IV.

A. Multiple Server Selection/Video On Demand Problem

In Figure 2, we show a number of data centers used to serve

clients located in a number of end user regions. For

concreteness, suppose that the data centers are serving video

on demand (VoD) streaming services to client regions.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

Figure 2. Server selection/VoD scenario.

Suppose we had S data centers,
s

DC , and that each can

stream a maximum quantity
s

Q of video. We have R users

regions,
r

U , that have demands
r

D for video that must be

satisfied. Each
s

DC has a cost of
s

cd to stream a unit of

video Q . In addition, the communication of video from
s

DC

to
r

U across the network is subject to network costs and

capacity constraints. Let
sr

q be the total bandwidth of video

produced at
s

DC for
r

U . The objective is to minimize the

total cost (data center and network):

,

()
s s sr

s s r

cd q networkCost q+∑ ∑ (1.1)

Subject to the network capacity constraints as well as:

Data center capacity constraints:

 sr s

r

q Q s≤ ∀∑ (1.2)

And user demands:

 sr r

s

q d r= ∀∑ (1.3)

B. Scheduled Remote Backups

In Figure 3, we show multiple data centers connected to a

network. In this scenario, data center
s

DC needs to do a bulk

transfer of data to one or more remote data centers,
r

DC ,

within prescribed time limits. In particular there is
s

Q bytes of

data to be transferred between
s

DC and the set of possible

remote data centers ()
r

sDC , and the data transfer must start

by
s

Start time and end before
s

End time.

Figure 3. Data Center scheduled data transfer scenario.

Let
sr

t
rate denote the rate that

s
DC is transferring data to

r
DC

during time period 0,1,...,t T= . Here we break down the time

interval over which scheduling is to occur, e.g., 24 hours, into

a fixed number of equally spaced periods of lengthτ in time.

The requirement that all the data must be transferred can be

expressed as

()

sr

t s

r s t

rate Q sτ
∈

= ∀∑ ∑
rDC

 (1.4)

Suppose that each remote data center imposes a storage cost of

r
storageCost regardless of when the transfer starts or stops,

then a simple linear objective function could be:

, ,

(,)sr sr

r t t

r s t sr t

storageCost rate networkCost rate tα τ +∑ ∑ ∑ (1.5)

Where the parameter 0α ≥ in equation (1.5) can be used to

emphasize or de-emphasize the relation of storage costs to

networking costs. A more realistic objective function could

include a sum of (non-linear) monotonically decreasing

functions of the transfer rates to encourage faster transfers as

suggested in [7].

C. Multi-Commodity Flow with Path Selection

When the technology permits arbitrary path selection we can

formulate network costs and constraints via a multi-

commodity flow problem [7]. This formulation results in a

linear programming problem which can be solved very

efficiently. However, such a formulation allows the demand

between a source and destination node to be split amongst

multiple paths. The "conformal realization theorem" of [7]

guarantees that we could decompose such an optimal flow

solution into a set of fixed resource paths. Hence if appropriate

inverse multiplexing like technology is available one can

directly make use of the solution. Otherwise we need to

restrict "splitting" by making use of integer valued (or binary)

flow variables, this leads to a mixed integer linear program

(MILP) which are theoretically difficult to solve, but amenable

to approximate solution techniques.

Let (,)G N L be the graph of a network with n nodes and m

links. Let
sr

ij
x denote the amount of bandwidth used from

source, s, for receiver, r, on link (,)i j . Let
sr

q be the total

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

demand between s and r,
ij

cn the costs per link, and
ij

bw the

capacity of link (,)i j .

The network cost function can be expressed as:

, (,)

sr

ij ij

s r i j

cn x∑∑ (1.6)

Link bandwidth constraints:

,

(,)sr

ij ij

s r

x b i j≤ ∀∑ (1.7)

Conservation of flow constraints at each node:

{ |(,) } { |(,) }

if

if

0 otherwise

sr

sr sr

ij ji sr

j i j L j j i L

q i s

x x q i r
∈ ∈

=


− = − =



∑ ∑ (1.8)

Where the equation holds , ,i s r∀ .

In the solution of these optimization problems, the non-zero

link flow variables,
sr

ijx ,determine the communications paths

through the network. If we wish to restrict the paths for flows

between source, s, and receiver, r, from using link (,)i j we

can set 0sr

ijx = . Similarly if we wish to restrict the choice to a

specific path, p, through the network we can set to a single

route we can set 1 (,)sr

ijx i j p= ∀ ∈ and 0 (,)sr

ijx i j p= ∀ ∉ .

D. Multi-Commodity Flow with Given Path Choices

The case of a reasonable number (>1) of fixed choices for the

path, p, between a source and destination cannot be easily

incorporated into the previous formulation. In such a case the

multi-commodity flow formulation suggested in [8] for

efficient solution to the routing and wavelength assignment

(RWA) problem in WDM networks is useful. Let W denote

the set of source-receiver (,)s r pairs to be considered. Let
sr

P

denote the set of paths that may be used for the source-

destination pair (,)s r . Let
sr

q denote the bandwidth demand

of the source-destination pair, and
,

0,1
p sr

y = indicate whether

a particular path p between the source-destination pair is used.

Note that we can allow
,

[0,1]
p sr

y ∈ if inverse multiplexing

mechanisms are available. The link bandwidth constraint can

be formulated as:

 ,

(,) { |(,) }

sr p sr ij

s r p i j p

q y b
∈ ∈

≤∑ ∑
W

 (1.9)

The demand constraint can be formulated as

, 1

sr

p sr

p

y sr
∈

= ∀∑
P

 (1.10)

Note that links may be given costs or entire paths may be

given costs to further hide link details.

Network cost:

,

(,) {(,)|(,) }sr

ij sr p sr

s r p i j i j p

cn q y
∈ ∈ ∈

∑ ∑ ∑
W P

 (1.11)

Or we can express this in terms of cost per path

,

(,)

cost()
sr

sr p sr

s r p

p q y
∈ ∈

∑ ∑
W P

 (1.12)

III. INFORMATION HIDING AND INTERFACE EFFICIENCY

The previously mentioned cross stratum optimization problem

formulations made use of network topology, link cost, and link

capacity constraint information, as well as data center cost and

capacity information. In practical networks, such information

can be quite voluminous and generally considered proprietary

by application, network, and data center providers. In this

section, we look at the minimal essential information to be

conveyed between the network, and the cross stratum

optimizer, i.e., across the NaaS interface as depicted in Figure

1. We break this discussion into two parts. First, we address

the general case where the network would provide a list of

paths and one wishes to minimize the corresponding

accompanying constraint information. Second, we consider

graph representations and how these may be simplified.

Since application demand information may be sensitive to the

application provider, we consider both the cases where no

demand information is conveyed to the network, and where

bounds on application demands are given. We always assume

that possible source and receiver pairs are made available to

the network and it is from this information that the network

will provide abstracted path list or graph information.

A. Path List Bandwidth Constraint Reduction

If a limited selection of paths are provided by the network to

the application optimizer, then by providing costs per path as

in equation (1.12) no information on individual link costs need

to be given. Looking at the link capacity constraint equations

(1.9) it initially appears that we need to convey information on

every link in the network across the NaaS interface since the

application demands
sr

q are not given to the network.

However, if we know a constraint equation for a particular

link will always be satisfied then that link information does

not need to be sent to the optimizer furthering information

hiding and interface efficiency. For example, for a link (,)i j

that is not used by any path the left hand side of equation (1.9)

is zero and hence the constraint is always satisfied and there is

no need to reveal the value of
ij

b , the capacity of link (,)i j . In

Figure 4, we show a network with five given paths and

thirteen links. Links L3 and L10 are not used by any of the

paths and hence their bandwidth constraints are always

satisfied. For the next more complicated case consider path P3

in Figure 4. P3 is the only path given that uses links L7, L11,

and L13 and doesn't share any links with any other path. The

network does not need to specify the link capacities for each

of these links but only the smallest (bottleneck) capacity link

since equation (1.9) will be satisfied for the larger capacity

links along path P3. In this case the network can report the

capacity of the path as the minimum of the links along the

path, i.e., () min ()
link path link

cap path bw
∈

= and doesn't need to

reveal which particular link forms the potential bottleneck or

how many links are involved in the path.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Figure 4. Example network with links constraints and given

paths.

In general we can remove a constraint equation for a link if

there is another link carrying the same set (or more) of paths

that has less capacity, i.e., another link would provide a

tighter bound. This rule leads to the following algorithm.

Algorithm 1:

(A1) For each link determine the subset of all given paths

that traverse it. Call these subsets path sets.

(A2) Group links that have exactly the same set of paths

traversing them. Call these links the contained links

for the path set.

(A3) Find the minimum capacity link over all links in a

path set. Call this the path set minimum

(A4) If a path set is wholly contained in another path set

and the minimum of the containing path set is smaller

than the contained path set then the bandwidth

constraint of the contained path set is always satisfied

and can be dropped.

(A5) Each path set not eliminated in the previous step

presents a mutual bandwidth constraint over the paths

in the set and can be represented by an "abstract" link

with capacity corresponding to the path set minimum.

This abstracted information is then exchanged

between network stratum and application stratum.

1) Example

Suppose the links in Figure 4 have the following capacity: B1

= 10, B2=7, B3=5, B4=6, B5=9, B6=12, B7=8, B8=11, B9=5,

B10=7, B11=8, B12 = 7, B13=5. In Table 1, we show the

result of applying steps (A1)-(A3) of Algorithm 1.

Table 1. Path sets, links, and path set minimums.

Path sets Contained Links Path Set Minimum

P1 L1 10

P2 L8 11

P3 L7, L11, L13 5 (abstract link A)

P5 L5 9

{P1, P2} L6 12

{P1, P4} L9, L12 5 (abstract link B)

{P1, P5} L2 7

{P1, P2, P5} L4 6 (abstract link C)

For step (A4) of Algorithm 1, we look at the containment

relationships between the path sets and their capacities. In

particular, path set {P1} is contained in path set {P1, P2, P5}

and min(P1) > min({P1, P2, P5}) so link L1's constraint can

be dropped. Set {P2} is contained in {P1, P2, P5} and min(P2)

> min({P1, P2, P5}) so link L8's constraint can be dropped.

Set {P3} is not contained in any other set so its constraint

must be kept. Set {P5} is contained in {P1, P2, P5} and

min(P5) > min({P1, P2, P5}) so link L5's constraint can be

dropped. Set {P1, P2} is contained in {P1, P2, P5} and

min({P1,P2}) > min({P1, P2, P5}) so path set {P1,P2}

corresponding link L6's constraint can be dropped. Set

{P1,P4} is not contained in any other set so its constraint must

be kept. {P1, P5} in {P1, P2, P5} and min({P1,P5}) >

min({P1, P2, P5}) so L2's constraint can be dropped. Finally,

set {P1, P2, P5} is not contained in any other set so its

constraint must be kept.

Applying step (A5) we end up with three abstract links (A, B,

C) with capacity (5, 5, 6) and the following sharing:

P3 uses abstract link A (not shared), P1 uses abstract link B

and C, P2 uses abstract link C, P4 uses abstract link B, P5 uses

abstract link C. Note how potentially thirteen link capacity

constraints have been reduced to the following three constraint

equations, a significant information transfer savings and

information hiding.

,

1, 4,

1, 2, 6 5,

5

5

6

N5N9 P3 N5N9

N1N9 P N1N9 N7N9 P N7N9

N1N9 P N1N9 N3N5 P N3N N2N5 P N2N5

q y

q y q y

q y q y q y

≤

+ ≤

+ + ≤

 (1.13)

Where
NsNr

q are the demands between nodes Ns and Nr and

,Pi NsNr
y are the path flow variables. Note that since the

demands are unknown to the network stratum, we cannot

reduce the set of equations (1.13) any further.

B. Path List Constraint Reduction, Known Demands

Now suppose that bounds
sr sr

Q q≥ on
sr

q ,the bandwidth

demand of the source-destination pair, are given by the

application stratum to the network stratum across the NaaS

interface. We can use the results of Algorithm 1 together with

these bounds to possible reduce further the number of

constraint equations. From
,

0,1
p sr

y = or
,

[0,1]
p sr

y ∈ and

equation (1.10) we obtain the following upper bound for the

left hand side of equation (1.9):

 ,

(,) { |(,) } (,) |
from s to r
traversing (,)

(,)
n

sr p sr sr

s r p i j p s r P

i j

q y Q i j
∈ ∈ ∈ ∃

≤ ∀∑ ∑ ∑
W W

 (1.14)

Where the right hand side of (1.14) is just the sum of all

demands that have a path that traverses link (i, j). If the right

hand side of (1.14) is also less than
ij

b then the capacity

constraint for link (i, j) is always met.

Algorithm 2:

(A1) Use Algorithm 1 to compute the paths sets that

represent potential bandwidth bottlenecks.

(A2) For each path set sum the demand bounds for each

demand that has at least one corresponding path.

(A3) If the sum of the corresponding demand bounds is

less than that the path set minimum, then the

constraint corresponding to this path set is always

met and does not need to be conveyed to the

optimizer.

N8
N7

N9

N10

N6

N3

N2

N4

N5

N1

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

L12

L13

P1

P2

P3

P4

P5

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

1) Example with Demand bounds

In Figure 5 we show our example network with an enhanced

group of paths that includes overlapping paths between same

source and destination. In Table 2 we show the results of

applying algorithm 1.

Figure 5. Example network with links constraints and multiple

given paths between N1 and N9.

Table 2. Path sets, links, and path set minimums.

Path sets Contained Links Path Set Minimum

P1 L1 10

P2 L8 11

P3 L7, L11, L13 5 (abstract link A)

P6 L3 5

{P1, P5} L2 7

{P1, P2, P5} L4 6 (abstract link B)

{P1, P2, P6} L6 12 (abstract link C)

{P5, P6} L5 9 (abstract link D)

{P1, P4, P6} L9, L12 5 (abstract link E)

Before taking into account the demand bounds, we get the

following set of constraint equations induced by the

constraining path sets of Algorithm 1(highlighted in red in

Table 2):

,

1, 2, 6 5,

1, 2, 6 6, 1 9

5, 6, 1 9

1, 4, 6, 1 9

5

6

12

9

5

N5N9 P3 N5N9

N1N9 P N1N9 N3N5 P N3N N2N5 P N2N5

N1N9 P N1N9 N3N5 P N3N N1N9 P N N

N2N5 P N2N5 N1N9 P N N

N1N9 P N1N9 N7N9 P N7N9 N1N9 P N N

q y

q y q y q y

q y q y q y

q y q y

q y q y q y

≤

+ + ≤

+ + ≤

+ ≤

+ + ≤

 (1.15)

Note that the path sets {P1, P2, P6} and {P1, P4, P6} both

contain paths P1 and P6 that serve the same source-destination

pair, i.e., could be used to satisfy the demand between nodes

N1 and N9. Using the bounds furnished by equation (1.14)

gives:

,

1, 6 2, 6 5, 6

1, 6 2, 6 6, 1 9 6

5, 6, 1 9

1, 4,

N5N9 P3 N5N9 N5N9

N1N9 P N1N9 N3N P N3N N2N5 P N2N5 N1N9 N3N N2N5

N1N9 P N1N9 N3N P N3N N1N9 P N N N1N9 N3N

N2N5 P N2N5 N1N9 P N N N2N5 N1N9

N1N9 P N1N9 N7N9 P N7N9 N

q y Q

q y q y q y Q Q Q

q y q y q y Q Q

q y q y Q Q

q y q y q

≤

+ + ≤ + +

+ + ≤ +

+ ≤ +

+ +
6, 1 91N9 P N N N1N9 N7N9

y Q Q≤ +

 (1.16)

Suppose we have the following demands:

Table 3. Source Destination demand bounds and Paths.

Source

Destination

Demand bound Paths

N1, N9 5 P1, P6

N2, N5 6 P5

N3, N6 2 P2

N5, N9 4 P3

N7, N9 4 P4

Then

3

6 1 2 5

5 6

1 4 6

6 1 2 6

4 { }

7 { , , }

13 { , , }

11 { , }

9 { , , }

N1N9 N3N N2N5

N2N5 N1N9

N1N9 N7N

N5N9

N1N9 N3N

9

Q Q Q P P P

Q Q P P

Q Q P P P

Q P

Q Q P P P

+ + =

+ =

+ =

=

+ = (1.17)

Comparing equations (1.15)-(1.17) we see that the bounds

induced by the demand constraints for path sets
3

{ }P and

1 2 6
{ , , }P P P are tighter than the link constraints for these path

sets and hence will always be satisfied and do not need to be

communicated from the network stratum to the application

stratum reducing the number of constraints to be shared from

five to three.

C. Service Specific Graph Reductions

We have previously noted that supplying long lists of potential

paths may be less interface efficient than supplying some type

of graph representation of the network. Here we look at the

case where the network chooses to supply a cost-constraint

graph to the optimizer. The network provider's internal

network view may be quite complex consisting of multiple

networking layers such as WDM, TDM, MPLS, Ethernet, or

IP. On the other hand, most applications will be concerned

with the combined impact on the single layer that they

interface to the network. In addition, the set of potentially

communicating nodes of interest to the application would be

limited and the possible communicating pairs would be

explicitly conveyed across the NaaS by the application to the

network. The network would then provide an appropriate

simplified (reduced) graph representation to the optimizer.

Initially this problem sounds similar to the topology

aggregation (TA) problem in hierarchical routing systems [9].

In TA one seeks to abstract the internals of a subdomain from

the point of view of its border nodes for use in hierarchical

routing. In this sense, TA is similar to a provider coming up

with an abstract graph to represent network resources

available to potential source-destination pairs. However,

current TA techniques work by simplifying full mesh

representations between border nodes and thus begin by

hiding the bandwidth constraint dependencies between

potential paths that are critical for the high bandwidth case.

Note that when one uses TA in routing, subsequent path setups

will trigger a "re-aggregation" if significant changes to

resource availability levels have occurred.

1) Generating Service Specific Graphs from Paths

Although TA is known to be a difficult problem, and it would

appear that our need to retain bandwidth constraint

information makes it even more difficult. From the practical

point of view, the limited number of possible communicating

nodes allows a very reasonable solution as follows. In

addition to the application furnishing the set of candidate

N8
N7

N9

N10

N6

N3

N2

N4

N5

N1

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

L12

L13

P1

P2

P3

P4

P5

P6

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

communicating nodes across the NaaS interface, it would also

indicate in either an exact or approximate sense its

optimization goals, e.g., lowest latency, lowest cost, high

reliability, etc… The network can then generate a number of

candidate paths, not to send across the NaaS interface, but to

derive a service specific graph that retains only those links and

nodes that are utilized by the candidate paths. The resulting

graph is then sent across the NaaS interface rather than a very

long list of candidate paths and their mutual constraints. Such

an approach is practical due to the existence of very efficient

algorithms for finding k-shortest paths [10].

As an example consider the network shown in Figure 6 where

the candidate communicating entities are: ("A4","B9"),

("A14", "B4"), ("B28","E5"), and ("A17","D4").

Figure 6. Network to be reduced.

In Figure 7 we show service specific graphs derived from the

graph of Figure 6. In Figure 7(a) we show a service specific

graph optimized for lowest latency derived from the k-shortest

paths between the candidate communicating nodes based

distance as a weight (k=4). In Figure 7(b) we show a graph

optimized for lowest cost derived from the k-shortest paths

(k=4) based on costs (randomly assigned). While in Figure

7(c) we show a graph optimized for low latency and high

reliability derived from the k-shortest disjoint pairs of paths

[11] (k=4).

Figure 7. Service specific graphs. (a) lowest latency, (b)

lowest cost, (b) low latency and high reliability.

2) Reducing Service Specific Graphs

Given a service specific network graph with costs and

capacities generated in any manner we can further reduce the

information to be transferred across the NaaS via any of the

following rules.

(C1) "Stub" nodes, i.e., nodes of degree 1, not in the

source-destination set along with their accompanying

links can be removed.

(C2) Nodes of degree 2, i.e., nodes forming a linear

segment, not in the source-destination set, can be

replaced by a link whose cost is the sum of the costs

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

of the two incident links and whose bandwidth is the

minimum.. .

(C3) Hiding high capacity links. Look at both nodes

bounding a link of relatively high capacity compared

to others in the network. Look at all the incident

edges at each node other than the edge of interest. If

the sum of these capacities is less than that of the

edge of interest then the nodes can be merged. Note

however the accuracy of the cost for traversing this

edge would be lost. This procedure can be run on all

links attached to non-SD nodes. Note that we can try

to abate some of the "cost distortion" by distributing

some of the cost of the removed link to the links

adjacent to the newly merged node. If we allow for

some "capacity distortion", i.e., our high capacity

link's capacity isn't strictly greater than the sum of

links adjacent to end nodes we could possibly reduce

the capacity of the links adjacent to the end nodes.

(C4) Hiding high capacity subnets. By repeated

application of rule (C3) one can reduce a high

capacity subnet to a single node.

Although rules (C1) and (C2) may appear somewhat trivial

they are very powerful when applied to ring sub-networks

commonly seen in optical networks and to tree sub-networks

commonly seen in Ethernet networks.

3) Example with Multiple Spanning Tree Ethernet

In Figure 8(a) we show an Ethernet network. This network

supports multiple spanning tree protocol (MSTP). The

application is interested in communications between nodes

N1, N3, N5, N6, and N7. In Figure 8(b)-(d) we show a

multiple spanning tree instances (MSTI) along with the

reduced graph obtained via rules (C1) and (C2). For tree

graphs rules (C1) and (C2) always allow us to remove all

nodes other than those of interest. In Figure 8(b)-(d) we denote

by "Lx m Ly" the abstracted link whose cost is the sum of the

costs of Lx and Ly and whose capacity is the minimum of

their capacities. Note how the bandwidth implications of the

different spanning trees become more apparent in the reduced

representations.

Figure 8. Ethernet network (a), along with multiple spanning

tree instances and their reductions (b)-(d).

D. Service Specific Graph Reductions with Known

Demands

Suppose that bounds on the source-destination demands are

given, i.e.,
sr sr

Q q≥ for all
sr

q . Under the mild assumption

that no chosen path contains a loop, i.e., the paths are simple,

we can then bound the traffic on any link by the sum of the

demands. In particular

, ,

(,)sr

ij sr

s r s r

x Q i j≤ ∀∑ ∑ (1.18)

Since each
sr

ij sr srx q Q≤ ≤ . Now if for some link (i, j) we have

,

sr ij

s r

Q b≤∑ (1.19)

Then the bandwidth constraint for that link (equation (1.7))

will always be satisfied. This leads to the following possible

graph reduction rule:

(D1) For any link satisfying equation (1.19) one can merge the

endpoint nodes if they are not source or destination nodes for

any flow.

As mentioned in the previous section such node mergers can

cause "distortion" in the costs of computed paths .

1) Example Transformation with Demands

Consider the network graph given in Figure 4. Suppose we are

interested in the source/destination nodes N1, N3, N5, N6, N7,

N9, and N10. Applying rule (C2) at node N2 gives the graph

shown in Figure 9(a). Now if links L4 and L9 are high

capacity links meeting the criteria of rule (D1) then we can

"merge" node N4 into node N3, and node N8 into node N7 to

obtain the reduced graph shown in Figure 9(b).

N7

N6

N3

N2

N4

N5
N1

L1

L2

L3

L4

L5

L6

L7

L8L9
L11

(a)

N7

N6

N3

N2

N4

N5
N1

L1

L2

L4
L6

L7

L8

N7

N6

N3

N2

N4

N5
N1

L3

L4

L5

L7

L8L9

N7

N6

N3

N5

N1

L1 m L2

L4 m L6

L7

L8

N7

N6

N3

N5

N1
L3

L4 m L5

L7

L8

MSTI #1

MSTI #2

(b)

(c)

N7

N6

N3

N2

N4

N5
N1

L2

L3

L4
L6

L8
L11

N7

N6

N3

N5
N1

L3

L4 m L6

L8
L11

MSTI #3

(d)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

Figure 9. Approximate graph transformations.(a) Original

network, (b) transformed network.

IV. THE NETWORKING AS A SERVICE INTERFACE

The job of the cross stratum optimizer from the network

perspective is to choose suitable paths for use by the

application as part of its overall optimization. The NaaS

interface will furnish information from the network on which

to make this choice. We have shown that there are two basic

ways to convey this information (a) via lists of path along with

their corresponding cost, capacity, and mutual constraint

information, or (b) via one or more cost-constraint graphs.

Given a graph one can derive paths hence a list of paths is in

some sense more fundamental representation. In addition lists

of paths may provide the highest degree of information hiding

between the network and application stratum. However, in

server selection problems or other network applications where

there may be many potential communicating entities a graph

representation may be much more efficient than very long lists

of all potential paths even in the case where there is only one

path choice per source and destination pair. The data plane,

control plane, and network provider preferences all influence

whether a graph representation can be used in addition to a

path list representation.

When arbitrary path placement between potential source and

destination nodes is allowed, a graph representation permits

full utilization of network resources. Technologies that allow

arbitrary placement of paths across a network include: circuit

switched technologies (WDM, TDM), strictly connection

oriented packet technologies (MPLS, ATM, and Frame

Relay), and connection oriented modes of multi-purpose

protocols such as InfiniBand's CO service[13]. OpenFlow [14]

capable switches permit general forwarding behavior based on

general packet header matching. These can include Ethernet

destination and source addresses, IP destination and source

addresses, as well as other protocol related fields. Since both

source and destination information can be utilized in

forwarding OpenFlow can enable traffic engineering like a

connection oriented packet switching technology.

In other technologies there is only a single path choice

between potential source and destination nodes. For example

in IP, a connectionless technology, one typically thinks of a

single path between each source and destination (not

considering equal cost multipath). Here there are two

discernible cases: (a) the paths are derivable from graph, (b)

the paths are not derivable from graph (or the provider

chooses not share a graph). For example in the case of single

area OSPF the paths can be derived from a graph, while BGP

[15] uses techniques based on policies and path vectors

(AS_PATH) as part of its route selection process and these are

not derived from graphs. Another important example where

the paths are easily derived from a graph comes from the basic

Ethernet Bridge specifications (802.1D) [16] utilizes a single

tree structure (graph) as the communication backbone between

all nodes.

Finally, there are a number of interesting technologies where

more than one path choice between source and destination is

available but arbitrary selection is not available or permitted.

Multi-Topology routing enhancements to OSPF [16] basically

furnishes multiple graphs with the shortest path used on each

graph. This could be represented by multiple graphs with the

constraint that only one choice (the shortest path) is used from

each graph. IEEE 802.1Q [18] includes virtual LANs

(VLANs) and allows for multiple spanning trees each of

which can be considered a graph. The multiple spanning tree

protocol (MSTP) allows for the assignment of VLANs to

different spanning trees. Hence we have more than one choice

in paths but all flows within the same VLAN have to share the

same tree. This could be represented by multiple graphs with

the constraint that all paths must be selected from the same

graph.

In some cases, for example, in WDM networks due to optical

impairments, the usable paths may be restricted in a way not

readily discerned from a simple graph representation.

Table 4 summarizes where graph representations may be

appropriate.

Table 4. Technologies, paths, and graphs.

Between

Source and

Destination

Representation Example

Technologies

Arbitrary

Potential Paths

Graph TDM, WDM,

MPLS, OpenFlow

Single Potential

Path

Derivable from

Graph

IP: OSPF

Path List (only) IP: BGP

 Multiple graphs, one Multi-Topology

N8
N7

N9

N10

N6

N3

N4

N5

N1

L1 m L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

L12

L13

Assume High capacity,

low cost link

N8 is not an

a SD node

N4 is not an

a SD node

Assume High capacity,

low cost link

(a)

N7

N9

N10

N6

N3

N5

N1

L1 m L2

L3

L5

L6

L7

L8

L10

L11

L12

L13

(b)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

Multiple

Potential Paths

path choice per graph OSPF

One graph choice per

multiple trees

(graphs)

VLAN assignment

in MSTP

Path List (only) WDM with

impairments

V. CONCLUSION

In this paper we have shown that high bandwidth cross

stratum optimization, a general form of load balancing across

both application and network stratum, is enabled by an

efficient network as a service interface. Key to this interface

is the sharing of bandwidth constraint information that

preserves the privacy of both network and application

providers. We showed that this may be accomplished either

via lists of paths with their mutual constraints reduced via our

path-set algorithm or by the generation and reduction of

service specific graphs.

Both approaches can readily be incorporated into emerging

standards for network-application interaction such as ALTO

[6]. In addition, as our examples showed, such techniques

have wide applicability from within the data center to between

data centers across wide area networks.

REFERENCES

[1] R. L. Carter and M. E. Crovella, “Server selection using

dynamic path characterization in wide-area networks,” in

INFOCOM ’97. Sixteenth Annual Joint Conference of

the IEEE Computer and Communications Societies.

Proceedings IEEE, 1997, vol. 3, pp. 1014–1021 vol.3.

[2] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker,

“Topologically-aware overlay construction and server

selection,” in INFOCOM 2002. Twenty-First Annual

Joint Conference of the IEEE Computer and

Communications Societies. Proceedings. IEEE, 2002, vol.

3, pp. 1190–1199 vol.3.

[3] Z. Duan, Z.-L. Zhang, and Y. T. Hou, “Service overlay

networks: SLAs, QoS, and bandwidth provisioning,”

IEEE/ACM Trans. Netw., vol. 11, no. 6, pp. 870–883,

2003.

[4] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford,

“DONAR: decentralized server selection for cloud

services,” in Proceedings of the ACM SIGCOMM 2010

conference, New York, NY, USA, 2010, pp. 231–242.

[5] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and A.

Silberschatz, “P4p: provider portal for applications,” in

Proceedings of the ACM SIGCOMM 2008 conference on

Data communication, New York, NY, USA, 2008, pp.

351–362.

[6] R. Alimi, Y. Yang, and R. Penno, “ALTO Protocol.”

[Online]. Available: http://tools.ietf.org/html/draft-ietf-

alto-protocol-14.

[7] D. P. Bertsekas and D. P. Bertsekas, Network

Optimization: Continuous and Discrete Models. Athena

Scientific, 1998.

[8] Asuman E. Ozdaglar and Dimitri P. Bertsekas, “Routing

and wavelength assignment in optical networks,”

IEEE/ACM Transactions on Networking, vol. 11, no. 2,

pp. 259 –272, 2003.

[9] S. Uludag, K.-S. Lui, K. Nahrstedt, and G. Brewster,

“Analysis of Topology Aggregation techniques for QoS

routing,” ACM Comput. Surv., vol. 39, Sep. 2007.

[10] J. Hershberger, M. Maxel, and S. Suri, “Finding the k

shortest simple paths: A new algorithm and its

implementation,” ACM Trans. Algorithms, vol. 3, no. 4,

p. 45, 2007.

[11] Q. V. Phung, D. Habibi, H. N. Nguyen, and K. Lo, “K

Pairs of Disjoint Paths Algorithm for Protection in WDM

Optical Networks,” in 2005 Asia-Pacific Conference on

Communications, 2005, pp. 183 –187.

[12] M. Hillenbrand, V. Mauch, J. Stoess, K. Miller, and F.

Bellosa, “Virtual InfiniBand clusters for HPC clouds,” in

Proceedings of the 2nd International Workshop on Cloud

Computing Platforms, New York, NY, USA, 2012, pp.

9:1–9:6.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G.

Parulkar, L. Peterson, J. Rexford, S. Shenker, and J.

Turner, “OpenFlow: enabling innovation in campus

networks,” SIGCOMM Comput. Commun. Rev., vol. 38,

no. 2, pp. 69–74, Mar. 2008.

[14] S. Hares, Y. Rekhter, and T. Li, “A Border Gateway

Protocol 4 (BGP-4),” Jan-2006. [Online]. Available:

http://tools.ietf.org/html/rfc4271.

[15] “802.1D-2004,” 2004.

[16] L. Nguyen, P. Psenak, S. Mirtorabi, P. Pillay-Esnault, and

A. Roy, “Multi-Topology (MT) Routing in OSPF.”

[Online]. Available: http://tools.ietf.org/html/rfc4915.

[17] “IEEE Standard for Local and metropolitan area

networks–Media Access Control (MAC) Bridges and

Virtual Bridged Local Area Networks,” IEEE Std

802.1Q-2011 (Revision of IEEE Std 802.1Q-2005), pp. 1

–1365, 2011.

Greg M Bernstein (M '82)

Bio to be provided.

Young Lee

Bio to be provided.

.

