
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

1

  

Abstract— when optimizing networked applications that 

require multiple streams of high bandwidth communications, 

network bandwidth constraints need to be taken into account. 

This general problem is referred to as cross-stratum 

optimization. However, application providers, compute providers 

(data centers), and network providers may be separate business 

entities and may want to share a minimal amount of information.  

In addition, by minimizing the amount of information shared one 

also promotes interface efficiency particularly when information 

changes with time.  This paper provides an architecture and 

optimization methods that enable  high bandwidth networking as 

a service by giving new techniques for representing and sharing 

network bandwidth constraint information. The best 

representation can be dependent on both the networks data 

plane, control plane technologies, information hiding 

requirements, and interface efficiency considerations.  We show 

that depending on the data and control plane that either a list of 

abstract link path vectors with enumerated shared bottlenecks or 

an abstract capacitated graph well represents network 

bandwidth constraints. Taking into account information hiding 

and interface efficiency we then give methods to further minimize 

the information transferred in these two approaches with varying 

degrees of fidelity. 

 
Index Terms—cross stratum optimization, joint 

network/compute optimization, global load and network 

balancing. 

 

I. INTRODUCTION 

ETWORKED applications, such as those running in, or 

between multiple data centers and users make use of both 

compute and network resources. As shown in Figure 1 

multiple distinct entities with differing business relationships 

may be involved in the delivery of a networked application.  

These can include: (a) application providers, (b) data center 
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providers, (c) network providers, and (d) cross stratum 

optimizers (aka global load balancers). We are particularly 

concerned here with the information shared between the 

network, application provider, and cross stratum optimizer 

which we show in Figure 1 as the networking as a service 

(NaaS) interface. 

 
Figure 1. High level entities and control interfaces associated 

with cross stratum optimization.  

 

We use the term cross stratum optimizer in preference to that 

of "load balancer" to emphasize that we are considering cost, 

constraints, and quality of service in both the network and 

application strata. We require that this optimization process (a) 

be dynamic so it can respond to rapidly changing load and 

resource conditions, (b) require minimal information sharing 

amongst distinct business entities, (c) be able to deal with a 

wide range of network data plane and control technologies, 

and (d) efficiently handle high bandwidth networked 

applications that utilize multiple concurrent information flows 

that may vie for limited network resources.  

 

In this paper we show how to best represent and share network 

bandwidth and cost constraints across the NaaS interface 

consistent with data plane and control plane limitations and 

requirements for information hiding and abstraction. 

 

A. Related Work 

There is extensive literature in the general area where 

networks and applications meet, such as on content delivery 

networks (CDN), web replica placement, etc… Here we 

review those work that are close to this one in intent and 

scope. 

 

Early notions of cross stratum optimization can be found in 
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reference [1] which introduced the notion of dynamic server 

selection as opposed to static server configuration. In their 

server selection they consider server load, network bandwidth, 

and latency as well as client demands in terms of file size. 

They used measurements of the network to determine 

bandwidth and latency and didn't assume knowledge of 

client/server location or network topology.  

 

In reference [2] an efficient measurement based method for 

deriving approximate network topology was given and applied 

to consider server selection and application overlay networks.  

The application overlay networks of  [2] are similar to modern 

multi-flow network applications. A key result of  [2] is the 

quality optimizations possible even with relatively 

approximate topology information. They do not, however, 

consider bandwidth constraints.  

 

References [1]  and [2] utilized measurements of available 

network capacity. In networks where traffic policing is used 

such methods would provide erroneous information, i.e., the 

current policer limits would be measured rather than available 

network capacity. Further, the capacity of underlying 

connection oriented packet switching, or circuit switched 

networks cannot be measured.  

 

Reference [3] deals with application overlay networks and 

specifically addresses the "bandwidth provisioning problem". 

Key to their analysis and results is the consideration of the 

price of network bandwidth in their optimization. They do not 

however, consider price or availability of server resources. 

They do not assume limits on the amount of bandwidth 

available from the network.  

 

Reference [4] introduces the key concept of a third party 

replica selector (optimizer) whose selection criteria are guided 

by policies that can include both network and server level 

information. In addition a decentralized algorithmic approach 

is given. They allow for dynamics in their costs. However they 

do not consider network bandwidth constraints. We further 

note that such a third party optimizer as introduced in [4]  

could also act as a trusted neutral third party separate from 

either data center, network, or application provider. 

 

Reference [5] introduces the key idea that networks and 

applications can and should cooperate by sharing limited 

information over a simple general interface to allow joint 

resource optimization.  Their network/application interface 

shares a general notion of "distance" between generalized 

location identifiers called PIDs.  They do not explicitly share 

bandwidth constraint information across this interface, though 

they show how to change reported "distance" measures in 

response to increased link loading. Many of the ideas from 

reference [5] have been incorporated into a relatively recent 

standards efforts at the IETF on application layer traffic 

optimization (ALTO)[6].  

 

B. Contributions and Outline 

This paper is concerned with the NaaS interface for 

applications that consume significant amounts of bandwidth 

relative to network capacity.  In this case, network bandwidth 

constraints need to be explicitly communicated between a 

network and the cross stratum optimizer. We show how to 

optimally convey network bandwidth constraints for a wide 

range of networking technologies. Such techniques are useful 

between large groups of users and data centers, between data 

centers across a WAN or MAN, within data centers across a 

LAN, or even within compute clusters. 

 

We start with a discussion of two generic cross stratum 

optimization problems: one related to server selection, and 

another related to remote backup scheduling.  We show how 

these can be formulated as linear programming (LP) problems, 

or mixed integer linear programming (MILP) problems with 

the network constraints and costs represented as an 

"augmenting" multi-commodity flow problem. We furnish two 

versions of this augmenting multi-commodity flow problem 

based on given paths or a network graph.  We then use these 

formulations along with insight into networks topology to 

derive exact and approximate minimal representations of the 

networks bandwidth constraints appropriate for a given 

network control and data plane technology. Finally, we 

provide an overview of an interface that can enable high 

bandwidth NaaS for a wide variety of network data and 

control planes. 

 

II. CROSS STRATUM OPTIMIZATION PROBLEMS 

In the following, we give fairly general formulations of two 

cross stratum optimization problems.  The first is a variant of a 

server selection problem that could represent video on demand 

(VoD) services.  The second involves the scheduling of large 

data transfers such as backups. To deal with different types of 

network constraints with respect to choices in path we look at 

these optimization problems as "coupled" to multi-commodity 

flow problems involving the network resources. We then 

quickly review two different multi-commodity flow 

formulations that are useful for the different path choice 

restrictions that we derived in section IV. 

A. Multiple Server Selection/Video On Demand Problem 

In Figure 2, we show a number of data centers used to serve 

clients located in a number of end user regions.  For 

concreteness, suppose that the data centers are serving video 

on demand (VoD) streaming services to client regions.  
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Figure 2. Server selection/VoD scenario. 

 

Suppose we had S data centers, 
s

DC , and that each can 

stream a maximum quantity 
s

Q  of video. We have R  users 

regions, 
r

U ,  that have demands 
r

D for video that must be 

satisfied. Each 
s

DC  has a cost of 
s

cd   to stream a unit of 

video Q .  In addition, the communication of video from 
s

DC

to 
r

U across the network is subject to network costs and 

capacity constraints. Let 
sr

q  be the total bandwidth of video 

produced at 
s

DC  for 
r

U . The objective is to minimize the 

total cost (data center and network): 

 
,

( )
s s sr

s s r

cd q networkCost q+∑ ∑   (1.1) 

Subject to the network capacity constraints as well as: 

Data center capacity constraints: 

 sr s

r

q Q s≤ ∀∑   (1.2) 

And user demands: 

 sr r

s

q d r= ∀∑   (1.3) 

B. Scheduled Remote Backups 

In Figure 3, we show multiple data centers connected to a 

network. In this scenario, data center 
s

DC needs to do a bulk 

transfer of data to one or more remote data centers, 
r

DC , 

within prescribed time limits. In particular there is 
s

Q  bytes of 

data to be transferred between
s

DC  and the set of possible 

remote data centers ( )
r

sDC , and the data transfer must start 

by 
s

Start  time and end before 
s

End time. 

 
Figure 3. Data Center scheduled data transfer scenario. 

Let 
sr

t
rate denote the rate that 

s
DC is transferring data to 

r
DC  

during time period 0,1,...,t T= . Here we break down the time 

interval over which scheduling is to occur, e.g., 24 hours, into 

a fixed number of equally spaced periods of lengthτ  in time. 

The requirement that all the data must be transferred can be 

expressed as 

 
( )

sr

t s

r s t

rate Q sτ
∈

= ∀∑ ∑
rDC

  (1.4) 

Suppose that each remote data center imposes a storage cost of 

r
storageCost  regardless of when the transfer starts or stops, 

then a simple linear objective function could be: 

 
, ,

( , )sr sr

r t t

r s t sr t

storageCost rate networkCost rate tα τ +∑ ∑ ∑  (1.5) 

Where the parameter 0α ≥  in equation (1.5) can be used to 

emphasize or de-emphasize the relation of storage costs to 

networking costs. A more realistic objective function could 

include a sum of (non-linear) monotonically decreasing 

functions of the transfer rates to encourage faster transfers as 

suggested in [7]. 

 

C. Multi-Commodity Flow with Path Selection 

When the technology permits arbitrary path selection we can 

formulate network costs and constraints via a multi-

commodity flow problem [7]. This formulation results in a 

linear programming problem which can be solved very 

efficiently. However, such a formulation allows the demand 

between a source and destination node to be split amongst 

multiple paths. The "conformal realization theorem" of  [7] 

guarantees that we could decompose such an optimal flow 

solution into a set of fixed resource paths. Hence if appropriate 

inverse multiplexing like technology is available one can 

directly make use of the solution.  Otherwise we need to 

restrict "splitting" by making use of integer valued (or binary) 

flow variables, this leads to a mixed integer linear program 

(MILP) which are theoretically difficult to solve, but amenable 

to approximate solution techniques. 

 

Let ( , )G N L  be the graph of a network with n  nodes and m  

links.  Let 
sr

ij
x  denote the amount of bandwidth used from 

source, s, for receiver, r, on link ( , )i j . Let 
sr

q  be the total 
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demand between s and r, 
ij

cn  the  costs per link,  and 
ij

bw  the 

capacity of link ( , )i j . 

The network cost function can be expressed as:  

 
, ( , )

sr

ij ij

s r i j

cn x∑∑   (1.6) 

Link bandwidth constraints: 

 
,

( , )sr

ij ij

s r

x b i j≤ ∀∑   (1.7) 

 

Conservation of flow constraints at each node: 

 

{ |( , ) } { |( , ) }

if 

if 

0 otherwise

sr

sr sr

ij ji sr

j i j L j j i L

q i s

x x q i r
∈ ∈

=


− = − =



∑ ∑   (1.8) 

Where the equation  holds , ,i s r∀ . 

 

In the solution of these optimization problems, the non-zero 

link flow variables, 
sr

ijx  ,determine the communications paths 

through the network.  If we wish to restrict the paths for flows 

between source, s, and receiver, r, from using link ( , )i j  we 

can set 0sr

ijx = .  Similarly if we wish to restrict the choice to a 

specific path, p, through the network we can set to a single 

route we can set 1 ( , )sr

ijx i j p= ∀ ∈  and 0 ( , )sr

ijx i j p= ∀ ∉ .  

D. Multi-Commodity Flow with Given Path Choices 

The case of a reasonable number (>1) of fixed choices for the 

path, p, between a source and destination cannot be easily 

incorporated into the previous formulation. In such a case the 

multi-commodity flow formulation suggested in [8] for 

efficient solution to the routing and wavelength assignment 

(RWA) problem in WDM networks is useful. Let W  denote 

the set of source-receiver ( , )s r  pairs to be considered. Let 
sr

P  

denote the set of paths that may be used for the source-

destination pair ( , )s r  . Let 
sr

q  denote the bandwidth demand 

of the source-destination pair, and 
,

0,1
p sr

y =  indicate whether 

a particular path p between the source-destination pair is used. 

Note that we can allow
,

[0,1]
p sr

y ∈  if inverse multiplexing 

mechanisms are available. The link bandwidth constraint can 

be formulated as: 

 ,

( , ) { |( , ) }

sr p sr ij

s r p i j p

q y b
∈ ∈

≤∑ ∑
W

  (1.9) 

The demand constraint can be formulated as 

 
, 1

sr

p sr

p

y sr
∈

= ∀∑
P

  (1.10) 

Note that links may be given costs or entire paths may be 

given costs to further hide link details. 

Network cost: 

 
,

( , ) {( , )|( , ) }sr

ij sr p sr

s r p i j i j p

cn q y
∈ ∈ ∈

∑ ∑ ∑
W P

  (1.11) 

Or we can express this in terms of cost per path 

 
,

( , )

cost( )
sr

sr p sr

s r p

p q y
∈ ∈

∑ ∑
W P

  (1.12) 

III. INFORMATION HIDING AND INTERFACE EFFICIENCY 

The previously mentioned cross stratum optimization problem 

formulations made use of network topology, link cost, and link 

capacity constraint information, as well as data center cost and 

capacity information.  In practical networks, such information 

can be quite voluminous and generally considered proprietary 

by application, network, and data center providers.  In this 

section, we look at the minimal essential information to be 

conveyed between the network, and the cross stratum 

optimizer, i.e., across the NaaS interface as depicted in Figure 

1.  We break this discussion into two parts.  First, we address 

the general case where the network would provide a list of 

paths and one wishes to minimize the corresponding 

accompanying constraint information. Second, we consider 

graph representations and how these may be simplified.  

Since application demand information may be sensitive to the 

application provider, we consider both the cases where no 

demand information is conveyed to the network, and where 

bounds on application demands are given. We always assume 

that possible source and receiver pairs are made available to 

the network and it is from this information that the network 

will provide abstracted path list or graph information.   

 

A. Path List Bandwidth Constraint Reduction 

If a limited selection of paths are provided by the network to 

the application optimizer, then by providing costs per path as 

in equation (1.12) no information on individual link costs need 

to be given.  Looking at the link capacity constraint equations 

(1.9) it initially appears that we need to convey information on 

every link in the network across the NaaS interface since the 

application demands 
sr

q are not given to the network. 

However, if we know a constraint equation for a particular 

link will always be satisfied then that link information does 

not need to be sent to the optimizer furthering information 

hiding and interface efficiency. For example, for a link ( , )i j  

that is not used by any path the left hand side of equation (1.9) 

is zero and hence the constraint is always satisfied and there is 

no need to reveal the value of 
ij

b , the capacity of link ( , )i j . In 

Figure 4, we show a network with five given paths and 

thirteen links. Links L3 and L10 are not used by any of the 

paths and hence their bandwidth constraints are always 

satisfied. For the next more complicated case consider path P3 

in Figure 4. P3 is the only path given that uses links L7, L11, 

and L13 and doesn't share any links with any other path. The 

network does not need to specify the link capacities for each 

of these links but only the smallest (bottleneck) capacity link 

since equation (1.9) will be satisfied for the larger capacity 

links along path P3.  In this case the network can report the 

capacity of the path as the minimum of the links along the 

path, i.e., ( ) min ( )
link path link

cap path bw
∈

=   and doesn't need to 

reveal which particular link forms the potential bottleneck or 

how many links are involved in the path. 
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Figure 4. Example network with links constraints and given 

paths. 

 

In general we can remove a constraint equation for a link if 

there is another link carrying the same set (or more) of paths  

that has less capacity, i.e., another link would provide a 

tighter bound. This rule leads to the following algorithm. 

Algorithm 1: 

(A1) For each link determine the subset of all given paths 

that traverse it. Call these subsets path sets. 

(A2) Group links that have exactly the same set of paths 

traversing them. Call these links the contained links 

for the path set.  

(A3) Find the minimum capacity link over all links in a 

path set. Call this the path set minimum 

(A4) If a path set is wholly contained in another path set 

and the minimum of the containing path set is smaller 

than the contained path set then the bandwidth 

constraint of the contained path set is always satisfied 

and can be dropped. 

(A5) Each path set not eliminated in the previous step 

presents a mutual bandwidth constraint over the paths 

in the set and can be represented by an "abstract" link 

with capacity corresponding to the path set minimum. 

This abstracted information is then exchanged 

between network stratum and application stratum. 

 

1) Example 

Suppose the links in Figure 4 have the following capacity: B1 

= 10, B2=7, B3=5, B4=6, B5=9, B6=12, B7=8, B8=11, B9=5, 

B10=7, B11=8, B12 = 7, B13=5. In Table 1, we show the 

result of applying steps (A1)-(A3) of Algorithm 1. 

 

Table 1. Path sets, links, and path set minimums. 

Path sets Contained Links Path Set Minimum 

P1 L1 10 

P2 L8 11 

P3 L7, L11, L13 5 (abstract link A) 

P5 L5 9 

{P1, P2} L6 12 

{P1, P4} L9, L12 5 (abstract link B) 

{P1, P5} L2 7 

{P1, P2, P5} L4 6 (abstract link C) 

 

For step (A4) of Algorithm 1, we look at the containment 

relationships between the path sets and their capacities. In 

particular, path set {P1} is contained in  path set {P1, P2, P5} 

and min(P1) > min({P1, P2, P5}) so link L1's constraint can 

be dropped. Set {P2} is contained in {P1, P2, P5} and min(P2) 

> min({P1, P2, P5}) so link L8's constraint can be dropped. 

Set {P3} is not contained in any other set so its constraint 

must be kept. Set {P5} is contained in {P1, P2, P5} and 

min(P5) > min({P1, P2, P5}) so link L5's constraint can be 

dropped. Set {P1, P2} is contained in {P1, P2, P5} and 

min({P1,P2}) > min({P1, P2, P5}) so path set {P1,P2} 

corresponding link L6's constraint can be dropped. Set 

{P1,P4} is not contained in any other set so its constraint must 

be kept. {P1, P5} in {P1, P2, P5} and min({P1,P5}) > 

min({P1, P2, P5}) so L2's constraint can be dropped. Finally, 

set {P1, P2, P5} is not contained in any other set so its 

constraint must be kept. 

Applying step (A5) we end up with three abstract links (A, B, 

C) with capacity (5, 5, 6) and the following sharing: 

P3 uses abstract link A (not shared), P1 uses abstract link B 

and C, P2 uses abstract link C, P4 uses abstract link B, P5 uses 

abstract link C.  Note how potentially thirteen link capacity 

constraints have been reduced to the following three constraint 

equations, a significant information transfer savings and 

information hiding. 

 

,

1, 4,

1, 2, 6 5,

5

5

6

N5N9 P3 N5N9

N1N9 P N1N9 N7N9 P N7N9

N1N9 P N1N9 N3N5 P N3N N2N5 P N2N5

q y

q y q y

q y q y q y

≤

+ ≤

+ + ≤

  (1.13) 

Where 
NsNr

q  are the demands between nodes Ns and Nr and 

,Pi NsNr
y  are the path flow variables. Note that since the 

demands are unknown to the network stratum, we cannot 

reduce the set of equations (1.13) any further. 

B. Path List Constraint Reduction, Known Demands 

Now suppose that bounds 
sr sr

Q q≥  on 
sr

q ,the bandwidth 

demand of the source-destination pair, are given by the 

application stratum to the network stratum across the NaaS 

interface. We can use the results of Algorithm 1 together with 

these bounds to possible reduce further the number of 

constraint equations. From 
,

0,1
p sr

y =  or 
,

[0,1]
p sr

y ∈ and 

equation (1.10) we obtain the following upper bound for the 

left hand side of equation  (1.9): 

 ,

( , ) { |( , ) } ( , ) |
from s to  r 
traversing ( , )

( , )
n

sr p sr sr

s r p i j p s r P

i j

q y Q i j
∈ ∈ ∈ ∃

≤ ∀∑ ∑ ∑
W W

  (1.14) 

Where the right hand side of (1.14) is just the sum of all 

demands that have a path that traverses link (i, j). If the right 

hand side of (1.14) is also less than 
ij

b  then the capacity 

constraint for link (i, j) is always met. 

Algorithm 2: 

(A1) Use Algorithm 1 to compute the paths sets that 

represent potential bandwidth bottlenecks. 

(A2) For each path set sum the demand bounds for each 

demand that has at least one corresponding path. 

(A3) If the sum of the corresponding demand bounds is 

less than that the path set minimum, then the 

constraint corresponding to this path set is always 

met and does not need to be conveyed to the 

optimizer. 

 

N8
N7

N9

N10

N6

N3

N2

N4

N5

N1

L1

L2
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1) Example with Demand bounds 

In Figure 5 we show our example network with an enhanced 

group of paths that includes overlapping paths between same 

source and destination. In Table 2 we show the results of 

applying algorithm 1. 

 

 
Figure 5. Example network with links constraints and multiple 

given paths between N1 and N9. 

 

Table 2. Path sets, links, and path set minimums. 

Path sets Contained Links Path Set Minimum 

P1 L1 10 

P2 L8 11 

P3 L7, L11, L13 5 (abstract link A) 

P6 L3 5 

{P1, P5} L2 7 

{P1, P2, P5} L4 6 (abstract link B) 

{P1, P2, P6} L6 12 (abstract link C) 

{P5, P6} L5 9 (abstract link D) 

{P1, P4, P6} L9, L12 5 (abstract link E) 

 

Before taking into account the demand bounds, we get the 

following set of constraint equations induced by the 

constraining path sets of Algorithm 1(highlighted in red in 

Table 2): 

 

,

1, 2, 6 5,

1, 2, 6 6, 1 9

5, 6, 1 9

1, 4, 6, 1 9

5

6

12

9

5

N5N9 P3 N5N9

N1N9 P N1N9 N3N5 P N3N N2N5 P N2N5

N1N9 P N1N9 N3N5 P N3N N1N9 P N N

N2N5 P N2N5 N1N9 P N N

N1N9 P N1N9 N7N9 P N7N9 N1N9 P N N

q y

q y q y q y

q y q y q y

q y q y

q y q y q y

≤

+ + ≤

+ + ≤

+ ≤

+ + ≤

  (1.15) 

Note that the path sets {P1, P2, P6} and {P1, P4, P6} both 

contain paths P1 and P6 that serve the same source-destination 

pair, i.e., could be used to satisfy the demand between nodes 

N1 and N9. Using the bounds furnished by equation (1.14) 

gives: 

 

,

1, 6 2, 6 5, 6

1, 6 2, 6 6, 1 9 6

5, 6, 1 9

1, 4,

N5N9 P3 N5N9 N5N9

N1N9 P N1N9 N3N P N3N N2N5 P N2N5 N1N9 N3N N2N5

N1N9 P N1N9 N3N P N3N N1N9 P N N N1N9 N3N

N2N5 P N2N5 N1N9 P N N N2N5 N1N9

N1N9 P N1N9 N7N9 P N7N9 N

q y Q

q y q y q y Q Q Q

q y q y q y Q Q

q y q y Q Q

q y q y q

≤

+ + ≤ + +

+ + ≤ +

+ ≤ +

+ +
6, 1 91N9 P N N N1N9 N7N9

y Q Q≤ +

 (1.16) 

Suppose we have the following demands: 

Table 3. Source Destination demand bounds and Paths. 

Source 

Destination 

Demand bound Paths 

N1, N9 5 P1, P6 

N2, N5 6 P5 

N3, N6 2 P2 

N5, N9 4 P3 

N7, N9 4 P4 

Then 

 

3

6 1 2 5

5 6

1 4 6

6 1 2 6

4 { }

7 { , , }

13 { , , }

11 { , }

9 { , , }

N1N9 N3N N2N5

N2N5 N1N9

N1N9 N7N

N5N9

N1N9 N3N

9

Q Q Q P P P

Q Q P P

Q Q P P P

Q P

Q Q P P P

+ + =

+ =

+ =

=

+ =   (1.17) 

Comparing equations (1.15)-(1.17) we see that the bounds 

induced by the demand constraints for path sets 
3

{ }P and 

1 2 6
{ , , }P P P  are tighter than the link constraints for these path 

sets and hence will always be satisfied and do not need to be 

communicated from the network stratum to the application 

stratum reducing the number of constraints to be shared from 

five to three. 

 

C. Service Specific Graph Reductions 

We have previously noted that supplying long lists of potential 

paths may be less interface efficient than supplying some type 

of graph representation of the network. Here we look at the 

case where the network chooses to supply a cost-constraint 

graph to the optimizer.  The network provider's internal 

network view may be quite complex consisting of multiple 

networking layers such as WDM, TDM, MPLS, Ethernet, or 

IP. On the other hand, most applications will be concerned 

with the combined impact on the single layer that they 

interface to the network.  In addition, the set of potentially 

communicating nodes of interest to the application would be 

limited and the possible communicating pairs would be 

explicitly conveyed across the NaaS by the application to the 

network. The network would then provide an appropriate 

simplified (reduced) graph representation to the optimizer. 

Initially this problem sounds similar to the topology 

aggregation (TA) problem in hierarchical routing systems [9]. 

In TA one seeks to abstract the internals of a subdomain from 

the point of view of its border nodes for use in hierarchical 

routing. In this sense, TA is similar to a provider coming up 

with an abstract graph to represent network resources 

available to potential source-destination pairs. However, 

current TA techniques work by simplifying full mesh 

representations between border nodes and thus begin by 

hiding the bandwidth constraint dependencies between 

potential paths that are critical for the high bandwidth case. 

Note that when one uses TA in routing, subsequent path setups 

will trigger a "re-aggregation" if significant changes to 

resource availability levels have occurred. 

1) Generating Service Specific Graphs from Paths 

Although TA is known to be a difficult problem, and it would 

appear that our need to retain bandwidth constraint 

information makes it even more difficult. From the practical 

point of view, the limited number of possible communicating 

nodes allows a very reasonable solution as follows.  In 

addition to the application furnishing the set of candidate 

N8
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N2

N4
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L3
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communicating nodes across the NaaS interface, it would also 

indicate in either an exact or approximate sense its 

optimization goals, e.g., lowest latency, lowest cost, high 

reliability, etc…  The network can then generate a number of 

candidate paths, not to send across the NaaS interface, but to 

derive a service specific graph that retains only those links and 

nodes that are utilized by the candidate paths.  The resulting 

graph is then sent across the NaaS interface rather than a very 

long list of candidate paths and their mutual constraints.   Such 

an approach is practical due to the existence of very efficient 

algorithms for finding k-shortest paths [10].   

As an example consider the network shown in Figure 6 where 

the candidate communicating entities are: ("A4","B9"), 

("A14", "B4"), ("B28","E5"), and  ("A17","D4").   

 
Figure 6. Network to be reduced. 

In Figure 7 we show service specific graphs derived from the 

graph of Figure 6. In Figure 7(a) we show a service specific 

graph optimized for lowest latency derived from the k-shortest 

paths between the candidate communicating nodes based 

distance as a weight (k=4).  In Figure 7(b) we show a graph 

optimized for lowest cost derived from the k-shortest paths 

(k=4) based on costs (randomly assigned). While in Figure 

7(c) we show a graph optimized for low latency and high 

reliability derived from the k-shortest disjoint pairs of paths 

[11] (k=4). 

 
Figure 7. Service specific graphs. (a) lowest latency, (b) 

lowest cost, (b) low latency and high reliability. 

 

2) Reducing Service Specific Graphs 

Given a service specific network graph with costs and 

capacities generated in any manner we can further reduce the 

information to be transferred across the NaaS via any of the 

following rules. 

 

(C1) "Stub" nodes, i.e., nodes of degree 1, not in the 

source-destination set along with their accompanying 

links can be removed. 

(C2) Nodes of degree 2, i.e., nodes forming a linear 

segment, not in the source-destination set, can be 

replaced by a link whose cost is the sum of the costs 
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of the two incident links and whose bandwidth is the 

minimum.. . 

(C3) Hiding high capacity links. Look at both nodes 

bounding a link of relatively high capacity compared 

to others in the network. Look at all the incident 

edges at each node other than the edge of interest. If 

the sum of these capacities is less than that of the 

edge of interest then the nodes can be merged. Note 

however the accuracy of the cost for traversing this 

edge would be lost. This procedure can be run on all 

links attached to non-SD nodes. Note that we can try 

to abate some of the "cost distortion" by distributing 

some of the cost of the removed link to the links 

adjacent to the newly merged node.  If we allow for 

some "capacity distortion", i.e., our high capacity 

link's capacity isn't strictly greater than the sum of 

links adjacent to end nodes we could possibly reduce 

the capacity of the links adjacent to the end nodes. 

(C4) Hiding high capacity subnets. By repeated 

application of rule (C3) one can reduce a high 

capacity subnet to a single node.  

Although rules (C1) and (C2) may appear somewhat trivial 

they are very powerful when applied to ring sub-networks 

commonly seen in optical networks and to tree sub-networks 

commonly seen in Ethernet networks. 

3) Example with Multiple Spanning Tree Ethernet 

In Figure 8(a) we show an Ethernet network. This network 

supports multiple spanning tree protocol (MSTP). The 

application is interested in communications between nodes 

N1, N3, N5, N6, and N7. In Figure 8(b)-(d) we show a 

multiple spanning tree instances (MSTI) along with the 

reduced graph obtained via rules (C1) and (C2).  For tree 

graphs rules (C1) and (C2) always allow us to remove all 

nodes other than those of interest. In Figure 8(b)-(d) we denote 

by "Lx m Ly" the abstracted link whose cost is the sum of the 

costs of Lx and Ly and whose capacity is the minimum of 

their capacities. Note how the bandwidth implications of the 

different spanning trees become more apparent in the reduced 

representations. 

 

 

 
Figure 8. Ethernet network (a), along with multiple spanning 

tree instances and their reductions (b)-(d). 

D. Service Specific Graph Reductions with Known 

Demands 

Suppose that bounds on the source-destination demands are 

given, i.e.,
sr sr

Q q≥  for all 
sr

q . Under the mild assumption 

that no chosen path contains a loop, i.e., the paths are simple, 

we can then bound the traffic on any link by the sum of the 

demands. In particular 

 
, ,

( , )sr

ij sr

s r s r

x Q i j≤ ∀∑ ∑   (1.18) 

Since each 
sr

ij sr srx q Q≤ ≤ . Now if for some link (i, j) we have 

 
,

sr ij

s r

Q b≤∑   (1.19) 

Then the bandwidth constraint for that link (equation (1.7)) 

will always be satisfied. This leads to the following possible 

graph reduction rule: 

(D1) For any link satisfying equation (1.19) one can merge the 

endpoint nodes if they are not source or destination nodes for 

any flow. 

As mentioned in the previous section such node mergers can 

cause "distortion" in the costs of computed paths . 

1) Example Transformation with Demands 

Consider the network graph given in Figure 4. Suppose we are 

interested in the source/destination nodes N1, N3, N5, N6, N7, 

N9, and N10. Applying rule (C2) at node N2 gives the graph 

shown in Figure 9(a).  Now if links L4 and L9 are high 

capacity links meeting the criteria of rule (D1) then we can 

"merge" node N4 into node N3, and node N8 into node N7 to 

obtain the reduced graph shown in Figure 9(b). 
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9

 

 
Figure 9. Approximate graph transformations.(a) Original 

network, (b) transformed network. 

 

 

IV. THE NETWORKING AS A SERVICE INTERFACE 

The job of the cross stratum optimizer from the network 

perspective is to choose suitable paths for use by the 

application as part of its overall optimization.  The  NaaS 

interface will furnish information from the network on which 

to make this choice.  We have shown that there are two basic 

ways to convey this information (a) via lists of path along with 

their corresponding cost, capacity, and mutual constraint 

information, or (b) via one or more cost-constraint graphs. 

Given a graph one can derive paths hence a list of paths is in 

some sense more fundamental representation.  In addition lists 

of paths may provide the highest degree of information hiding 

between the network and application stratum. However, in 

server selection problems or other network applications where 

there may be many potential communicating entities a graph 

representation may be much more efficient than very long lists 

of all potential paths even in the case where there is only one 

path choice per source and destination pair. The data plane, 

control plane, and network provider preferences all influence 

whether a graph representation can be used in addition to a 

path list representation. 

 

When arbitrary path placement between potential source and 

destination nodes is allowed, a graph representation permits 

full utilization of network resources. Technologies that allow 

arbitrary placement of paths across a network include: circuit 

switched technologies (WDM, TDM), strictly connection 

oriented packet technologies (MPLS, ATM, and Frame 

Relay), and connection oriented modes of multi-purpose 

protocols such as InfiniBand's CO service[13]. OpenFlow [14] 

capable switches permit general forwarding behavior based on 

general packet header matching. These can include Ethernet 

destination and source addresses, IP destination and source 

addresses, as well as other protocol related fields.  Since both 

source and destination information can be utilized in 

forwarding OpenFlow can enable traffic engineering like a 

connection oriented packet switching technology.  

 

In other technologies there is only a single path choice 

between potential source and destination nodes. For example 

in IP, a connectionless technology, one typically thinks of a 

single path between each source and destination (not 

considering equal cost multipath).  Here there are two 

discernible cases:  (a) the paths are derivable from graph, (b) 

the paths are not derivable from graph (or the provider 

chooses not share a graph).  For example in the case of single 

area OSPF the paths can be derived from a graph, while BGP 

[15] uses techniques based on policies and path vectors 

(AS_PATH) as part of its route selection process and these are 

not derived from graphs.  Another important example where 

the paths are easily derived from a graph comes from the basic 

Ethernet Bridge specifications (802.1D) [16] utilizes a single 

tree structure (graph) as the communication backbone between 

all nodes. 

 

Finally, there are a number of interesting technologies where 

more than one path choice between source and destination is 

available but arbitrary selection is not available or permitted. 

Multi-Topology routing enhancements to OSPF [16] basically 

furnishes multiple graphs with the shortest path used on each 

graph. This could be represented by multiple graphs with the 

constraint that only one choice (the shortest path) is used from 

each graph. IEEE 802.1Q [18] includes virtual LANs 

(VLANs) and allows for multiple spanning trees each of 

which can be considered a graph. The multiple spanning tree 

protocol (MSTP) allows for the assignment of VLANs to 

different spanning trees.  Hence we have more than one choice 

in paths but all flows within the same VLAN have to share the 

same tree. This could be represented by multiple graphs with 

the constraint that all paths must be selected from the same 

graph. 

In some cases, for example, in WDM networks due to optical 

impairments, the usable paths may be restricted in a way not 

readily discerned from a simple graph representation.  

 

Table 4 summarizes where graph representations may be 

appropriate. 

 

Table 4. Technologies, paths, and graphs. 

Between 

Source and 

Destination 

Representation Example 

Technologies 

Arbitrary 

Potential Paths 

Graph TDM, WDM, 

MPLS, OpenFlow 

Single Potential 

Path 

Derivable from 

Graph 

IP: OSPF 

Path List (only) IP: BGP 

 Multiple graphs, one Multi-Topology 
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Multiple 

Potential Paths 

path choice per graph OSPF 

One graph choice per 

multiple trees 

(graphs) 

VLAN assignment 

in MSTP 

Path List (only) WDM with 

impairments 

 

 

V. CONCLUSION 

In this paper we have shown that high bandwidth cross 

stratum optimization, a general form of load balancing across 

both application and network stratum, is enabled by an 

efficient network as a service interface.  Key to this interface 

is the sharing of bandwidth constraint information that 

preserves the privacy of both network and application 

providers.  We showed that this may be accomplished either 

via lists of paths with their mutual constraints reduced via our 

path-set algorithm or by the generation and reduction of 

service specific graphs. 

Both approaches can readily be incorporated into emerging 

standards for network-application interaction such as ALTO 

[6]. In addition, as our examples showed, such techniques 

have wide applicability from within the data center to between 

data centers across wide area networks.  
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