
BBS FOR VERIFIABLE
CREDENTIALS - DATA

INTEGRITY
Dr. Greg Bernstein

June 4th, 2024

BBS SIGNATURE WITH VC
DATA INTEGRITY

OUTLINE
1. VC Data Integrity Review
2. BBS Signature Review
3. BBS Messages from JSON-LD VC
4. Mandatory and Selective Disclosure with JSON
5. Putting all the pieces together: Base and Derived Proofs

ME AND MY VC WORK
* W3C “Invited Expert”, semi-retired, website:

Helping (co-editor) with: , , ,
 specs

Cryptographic test vector generation for the specs
 and (open source code)

Open Source implementations: ,
, , (tiny implementation for

interoperability testing)
Helping out with IETF BBS specs: , ,

.

Grotto Networking

VC-DI VC-DI-EdDSA VC-DI-ECDSA VC-DI-
BBS

EdDSA and
ECDSA ECDSA-SD and BBS

VC-DI-ECDSA-SD BBS Scheme
(IETF) VC-DI-BBS VC-Server

BBS Blind BBS BBS per Verifier
Id (pseudonym)

https://www.grotto-networking.com/
https://w3c.github.io/vc-data-integrity/
https://w3c.github.io/vc-di-eddsa/
https://w3c.github.io/vc-di-ecdsa/
https://w3c.github.io/vc-di-bbs/
https://w3c.github.io/vc-di-bbs/
https://github.com/Wind4Greg/EdDSA-Test-Vectors
https://github.com/Wind4Greg/EdDSA-Test-Vectors
https://github.com/Wind4Greg/ECDSA-SD-TestVectors
https://github.com/Wind4Greg/ECDSA-SD-Library
https://github.com/Wind4Greg/grotto-bbs-signatures
https://github.com/Wind4Greg/grotto-bbs-signatures
https://github.com/Wind4Greg/BBS-VC-Library
https://github.com/Wind4Greg/Server-for-VCs
https://www.ietf.org/archive/id/draft-irtf-cfrg-bbs-signatures-05.html
https://www.ietf.org/archive/id/draft-kalos-bbs-blind-signatures-00.html
https://www.ietf.org/archive/id/draft-vasilis-bbs-per-verifier-linkability-00.html
https://www.ietf.org/archive/id/draft-vasilis-bbs-per-verifier-linkability-00.html

VC DATA INTEGRITY
REVIEW

KEY SPECIFICATIONS
1. In particular JSON-LD

based with information specified in section .
We are concerned here with embedded proof

 as compared to an enveloping proof mechanism.
2. This specifies the proof

field that gets embedded to secure a credential. Note that the
embedded approach combined with DI allows for “parallel
signatures”,

Verifiable Credentials Data Model v2.0
Verifiable Credentials

securing
mechanism
Verifiable Credential Data Integrity 1.0

proof sets, and proof chains

https://w3c.github.io/vc-data-model/
https://w3c.github.io/vc-data-model/#verifiable-credentials
https://w3c.github.io/vc-data-model/#securing-mechanisms
https://w3c.github.io/vc-data-model/#securing-mechanisms
https://w3c.github.io/vc-data-integrity/
https://w3c.github.io/vc-data-integrity/#understanding-proof-sets-and-proof-chains

DATA MODEL VC GENERAL FORM
, aka unsecured documentData Model Verifiable Credentials

{

 "@context": ["https://www.w3.org/ns/cred

 "type": ["VerifiableCredential", "more...

 "issuer": "URL or object", // Required

 "credentialSubject": {

 // Bulk of info here. Required!

}

https://w3c.github.io/vc-data-model/#verifiable-credentials

DATA INTEGRITY PROOF GENERAL FORM
From and ,Proofs DataIntegrityProof

{

 "type": "DataIntegrityProof", // Required

 "proofPurpose": "assertionMethod", // Req

 "verificationMethod": "string/URL links t

 "proofValue": "string encoding binary dat

 "cryptosuite": "bbs-2023", // Required fo

https://w3c.github.io/vc-data-integrity/#proofs
https://w3c.github.io/vc-data-integrity/#dataintegrityproof

DI (EMBEDDED) SECURED DOCUMENT
FORMAT

Only Required Properties Shown

{

 "@context": ["https://www.w3.org/ns/cred

 "id": "a URL", // For the VC itself, Opti

 "type": ["VerifiableCredential", "more...

 "issuer": "URL or object", // Required

 "credentialSubject": {

// Bulk of info here Required!

GENERAL APPROACH HIGH LEVEL

Transform, Hash, Sign

GENERAL APPROACH I: EDDSA AND
ECDSA

1. Starting with proof options which includes anything in the proof
but the proofValue. This object is appropriately canonized (JCS or
RDFC) and then hashed to produce proofConfigHash. Protects
proof meta data

2. The unsecured document gets canonized (JCS or RDFC) and then
hashed to produce transformedDocumentHash. Protects
document data and meta data

GENERAL APPROACH II: EDDSA AND
ECDSA

3. The two hashes above are concatenated then a signature value,
proofBytes, is computed with the appropriate algorithm (ECDSA-
P256, ECDSA-P384, EdDSA).

4. proofBytes is then (multibase) encoded to produce the proofValue
field for inclusion in the proof field.

WHY CANONICALIZATION?
Example:

1. Adding/removing whitespace between tokens in a JSON
document does not change its meaning

2. Changing the order of properties in a JSON object does not change
its meaning

3. Either of the above will change the value of a cryptographic hash
over the text of the JSON

4. Need equivalent documents to produce same hash! Solution ==>
put in a canonical (standard) form.

JSON Canonicalization Scheme (JCS)

https://www.rfc-editor.org/rfc/rfc8785

EXAMPLE FOR CANONICALIZATION

{

 "@context": "https://json-ld.org/contexts

 "name": "Manu Sporny",

 "homepage": "http://manu.sporny.org/",

 "image": "http://manu.sporny.org/images/m

}

EXAMPLE JCS CANONICALIZATION
Note ordering of fields, removal of white space.

{"@context":"https://json-ld.org/contexts/p

BBS SIGNATURE SCHEME
REVIEW

BACKGROUND READING AND DEMO
, May 2023.BBS for Verifiable Credentials - Basics

The BBS Signature Scheme (DIF/IETF dra�)
BBS in Browser Demo

https://grotto-networking.com/Presentations/BBSforVCs/BBSforVCsBasics.html
https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html
https://www.grotto-networking.com/BBSDemo/

BBS FUNDAMENTAL PROPERTIES
From

Fixed Sized Signatures: The scheme allows a signer to sign
multiple messages and produce a single -constant size- output
signature, i.e., 80 bytes.
Selective Disclosure: The receiver of the signature can generate a
BBS proof that discloses only a subset of the original set of
messages.
Unlinkable Proofs: The BBS proofs are unlinkable to the original
signature, and to each other.

DIF/IETF dra�

https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html

EXAMPLE: TREE DRIVERS LICENSE
From , not a VC or mDL…Grotto BBS demo

{

 "publicKey": "b65b7cbff4e81b723456a13936b

 "header": "11223344556677889900aabbccddee

 "messages": [

 "FirstName: Sequoia",

 "LastName: Sempervirens",

"Address: Jedediah Smith Redwoods State

https://www.grotto-networking.com/BBSDemo/

SELECTIVE DISCLOSURE EXAMPLE: A
TREE GOES TO A BAR…

Selective Disclosure

EXAMPLE DERIVED “PROOF”

{

 "pk": "b65b7cbff4e81b723456a13936b6bcc77a

 "header": "11223344556677889900aabbccddee

 "ph": "",

 "disclosedIndexes": [

 0,

3

GOOD TRACKING I

Tracking for Safety

GOOD TRACKING II

Not a big enough boat…
VERIFIERS TRACKING HOLDERS

Not the good kind of tracking…

UNLINKABLE PROOFS EXAMPLE 1
A tree goes into a bar and needs to prove it lives in a local state
park in order to get a very large glass of water.
It then goes to another local bar for another very large glass of
water.
It doesn’t want to be tracked across bars or have its water
consuming habits tracked.
Solution: Generate a separate BBS proof for each bar it visits

UNLINKABLE PROOFS EXAMPLE 2
BBS Proof presented at first bar

{

 "pk": "b65b7cbff4e81b723456a13936b6bcc77a

 "header": "11223344556677889900aabbccddee

 "ph": "",

 "disclosedIndexes": [

 2

]

UNLINKABLE PROOFS EXAMPLE 3
BBS Proof presented at second bar

{

 "pk": "b65b7cbff4e81b723456a13936b6bcc77a

 "header": "11223344556677889900aabbccddee

 "ph": "",

 "disclosedIndexes": [

 2

]

UNLINKABLE PROOFS
The values (cryptographic byte array) contained in the BBS proofs
are unlinkable. In particular they appear essentially random
Unlinkable proofs do not prevent correlation on disclosed
messages! This information has been disclosed by the holder.
See for a full discussion of
unlinkability and its limits.

Selective Disclosure and Unlinkability

https://w3c.github.io/vc-di-bbs/#selective-disclosure-and-unlinkability

BBS API AND MESSAGES

TERMINOLOGY COLLISION!
Important: We have a terminology collision! Both BBS signatures

and verifiable credentials use the terms proof and signature.
However these can have very different meanings, hence we will be
verbose and use terms like “BBS signature”, “BBS proof”, and “VC

data integrity proof”.

BBS SIGNATURE SCHEME API 1
BBS has sign and verify

1. signature = Sign(Secret_Key, Public_key, header,
messages) used by issuer/(signer)

2. result = Verify(Public_key, signature, header,
messages) is used when the holder/(prover) verifies the VC it
receives from the issuer/(signer).

BBS SIGNATURE SCHEME APIS 2
but BBS is more than sign and verify

3. bbs_proof = ProofGen(Public_key, signature,
header, ph, messages, disclosed_indexes) is used when
the holder want to prepare a derived VC that selectively discloses
original VC information.

4. result = ProofVerify(Public_key, bbs_proof,
header, ph, disclosed_messages, disclosed_indexes)
is used by the verifier to validate the derived VC against the
original issuers public key.

BBS MESSAGES FROM JSON-LD?
From VC BBS Test Vector

{

 "@context": [

 "https://www.w3.org/ns/credentials/v2",

 {

 "@vocab": "https://windsurf.grotto-ne

 }

]

https://w3c.github.io/vc-di-bbs/#base-proof

STATEMENTS/MESSAGES FROM JSON-LD
 is a serialization, storage and exchange format for the

RDF is a graph based data model consisting of: Subject, Predicate,
Object, and if needed containing Graph.

 transforms a JSON-LD document into an
ordered set of statements called quads.
We use these statements/quads as our BBS messages!

JSON-LD
Resource Description Framework (RDF)

RDF Canonicalization

https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/rdf11-concepts/#section-dataset
https://www.w3.org/TR/rdf-canon/

EXAMPLE STATEMENTS/MESSAGES
From VC BBS Test Vector

[

 "_:c14n0 <https://windsurf.grotto-network

 "_:c14n0 <https://windsurf.grotto-network

 "_:c14n0 <https://windsurf.grotto-network

 "_:c14n1 <https://windsurf.grotto-network

 "_:c14n1 <https://windsurf.grotto-network

" :c14n1 <https://windsurf grotto network

https://w3c.github.io/vc-di-bbs/#base-proof

MANDATORY AND
SELECTIVELY DISCLOSED

STATEMENTS

SELECTIVE DISCLOSURE REQUIREMENTS
An issuer can specify that a subset of the statements must be
revealed by the holder to the verifier. These are the mandatory
statements.
A holder can specify a subset of the non-mandatory statements to
be revealed. These are the selectively disclosed statements.
Want to do this in a user and developer friendly way.

JSON POINTERS

“JSON Pointer defines a string syntax for identifying a specific
value within a JavaScript Object Notation (JSON) document.”
Example: "/issuer" is used to match the issuer field.

JavaScript Object Notation (JSON) Pointer (RFC6901)

https://www.rfc-editor.org/rfc/rfc6901

EXAMPLE: MANDATORY POINTERS
Prior to a fictional windsurfing race: declare two sails, most recent board

["/issuer",

 "/credentialSubject/sailNumber", // how t

 "/credentialSubject/sails/1",

 "/credentialSubject/boards/0/year",

 "/credentialSubject/sails/2"

]

EXAMPLE: MATCHING FIELDS

[

 {

 "pointer": "/issuer",

 "value": "https://vc.example/windsurf/r

 },

 {

"pointer": "/credentialSubject/sailNumb

EXAMPLE: MANDATORY STATEMENTS
(NQUADS)

Behind the scenes!

[

 [

 0,

 "_:b0 <http://www.w3.org/1999/02/22-rdf

],

 [

1

DATA INTEGRITY BASE BBS
PROOF (ISSUER =>

HOLDER)

ISSUE A BBS PROTECTED VC
Inputs:

proof options: Required and any optional fields for use in the
attached proof
Unsecured document: The credential without proof
Key material: For use by the signing algorithm
Mandatory Pointers: Array (possibly empty) of JSON pointers to
mandatory reveal information.

DETAILS: SUMMARIZE AND PROTECT
PROOF OPTIONS

1. Canonicalize proof options using RDFC
2. Hash canonized proof options ==> proofHash

DETAILS: SUMMARIZE AND PROTECT
MANDATORY STATEMENTS

Inputs: mandatory pointers and unsecured credential
Run “Canonicalize and Group” function to produce a list of
mandatory quads and a list of non-mandatory quads.
Hash list of mandatory quads ==> mandatoryHash

DETAILS: COMPUTE BBS SIGNATURE
BYTES

Sign(Secret_Key, Public_key, header, messages)

header = concatenation of proofHash and mandatoryHash
messages = non-mandatory quads
Note: BBS header is “associated data” that must be conveyed to
holder and verifier

DETAILS: PACKAGE UP INFO INTO
PROOFVALUE

Add a proof header (CBOR tag) of bytes 0xd9, 0x5d, and 0x02 to
indicate base BBS proof
CBOR encode the components: BBS signature, BBS header,
publicKey, hmacKey, and mandatoryPointers
Multibase encode the above to produce the proofValue string

DETAILS: ATTACH PROOF
Add proofValue string to proof options
Add proof options as proof field of unsecured document to
produce the secured document.

CREATE BASE PROOF EXAMPLE

{

 "@context": [

 "https://www.w3.org/ns/credentials/v2",

 {

 "@vocab": "https://windsurf.grotto-ne

 }

]

DATA INTEGRITY DERIVED
BBS PROOF (HOLDER =>

VERIFIER)

CREATE A SELECTIVELY DISCLOSED BBS
VC
Inputs

Secured Document containing a base BBS proof.
Selective Pointers: JSON pointers to fields that holder want to
disclose.

Output: Derived Data Integrity Secured Document

DETAILS: COMPUTE BBS PROOF
ProofGen(Public_key, signature, header, ph,

messages, disclosed_indexes) where

signature is the original BBS signature from issuer. Not sent to
verifier!
messages are the non-mandatory quads
The disclosed_indexes are based on the selective pointers relative
to the non-mandatory quads

DETAILS: CREATE DISCLOSURE
DOCUMENT

Recover the unsecured issued document from the secured
document by removing the proof field.
Create the unsecured disclosed document based on mandatory
and selective pointers applied to the unsecured issued document

DETAILS: CREATE DERIVED PROOFVALUE
Add a proof header (CBOR tag) of bytes 0xd9, 0x5d, and 0x03.
CBOR encode the components: bbsProof, compressedLabelMap,
mandatoryIndexes, selectiveIndexes, and presentationHeader.
Multibase encode the above to produce the proofValue string

DETAILS: ATTACH DERIVED PROOF
proof options is obtained from the proof field of the secured
document with the proofValue removed.
Add the new proofValue string to proof options
Add proof options as proof field of unsecured document to
produce the secured derived document.

CREATE DERIVED: EXAMPLE

{

 "@context": [

 "https://www.w3.org/ns/credentials/v2",

 {

 "@vocab": "https://windsurf.grotto-ne

 }

]

